
Combined Static and
Dynamic Mutability Analysis

SHAY ARTZI , ADAM KIEZUN, DAVID GLASSER, MICHAEL D. ERNST

ASE 2007

PRESENTED BY: MENG WU

1/31

About Author
Program Analysis Group,

Computer Science and

Artificial Intelligence Laboratory

Students of Prof. Michael Ernst

Shay Artzi

VP Development, CTO at Zappix

Postdoc at IBM research

Adam Kiezun

Computational biologist in the Cancer
Program at Broad Institute of Harvard and
MIT

Postdoc at Division of Genetics of Brigham
and Women's Hospital and Harvard
Medical School

2/31

Outline
• Parameter Mutability Definition and Applications

• Classifying Parameters:
 Staged analysis

 Dynamic analyses

 Static analyses

• Evaluation

• Conclusions

3/31

Parameter Mutability

Parameter P of method M is:
• Mutable if some execution of m can change the state of an object

that at run-time corresponds to p
• Immutable if no such execution exists
• All parameters are considered to be fully un-aliased on top-level

method entry
A method is pure (side-effect free) if:
• All its parameters are immutable (Including receiver and global

state)

4/31

Parameter Mutability
The state of an object o is the part of the heap that is reachable from o
by following references, and includes the values of reachable primitive
fields.
Thus, reference immutability is deep—it covers the entire abstract state
of an object, which includes the fields of objects reachable from the
object.

C is mutable.
It is mutated by c.d.e.f = null

5/31

Example and Classification
•p1 is directly mutable, in line 8

•p2 is indirectly mutable

•p3 is mutable because line 19 modifies
p3.next.next.

•p4is directly modified in modifyAll (line 18),
because the mutation occurs via reference p4

•p5 is mutable, cause p3 and p4 may be
aliased

•p6, p7 is immutable, no execution of either
method could modify an object passed to
them

6/31

Using Mutability Information
in Other Applications
 Program comprehension (Dulado 03)

 Modeling (Burdy 05)

 Verification (Tkachuk 03)

 Compiler optimization (Clausen 97)

 Program transformation (Fowler 00)

 Regression oracle creation (Marini 05, Xie 06)

 Invariant detection (Ernst 01)

 Specification mining (Dallmeier 06)

 Model-based Test Input Generation(Palulu, Artzi 06)

7/31

Staged Mutability Analysis
Idea:
◦ Combine simple analyses to outperform a complicated one
◦ Harvest the power of both static and dynamic analyses
◦ Optionally use unsound analyses. Unsoundness is mitigated by other analysis in the

combination and is acceptable for some

Advantages:
◦ Improve overall accuracy
◦ Scaleable

Pipeline approach:
◦ Connect a series of scalable analyses in a pipeline.
◦ The i/o of each analysis is a classification of all parameters.
◦ Analyses represent imprecision using the unknown classification

8

9 u
2 m
4 i

3 u
6 m
6 i

1 u
8 m
6 i

15 u
0 m
0 i

Analysis 1
Static

Analysis 2
Dynamic

Analysis 3
Static

8/31

Staged Mutability Analysis
The problem of mutability inference is undecidable, so no analysis can be both
sound and complete.

 An analysis is i-sound if it never classifies a mutable parameter

as immutable .

 An analysis is m-sound if it never classifies an immutable parameter as

mutable .

 An analysis is complete if it classifies every parameter as either mutable or

immutable .

9/31

Staged Mutability Analysis
Dynamic Analysis
• Observe execution to classify as mutable

• Performance optimizations

• Optional accuracy heuristics

• Random generation of inputs

Static Analysis
• Intra-procedural points-to analysis

• Inter-procedural propagation phase

10/31

Dynamic Mutability Analysis
Parameter p of method m is classified as mutable if:

I. the transitive state of the object that p points to
changes during the execution of m , and

II. p is not aliased to any other parameter of m

Implementation:
When object o is modified in method m during the execution of program,
calculate reach(m,p) for each p, which is the set of objects that are transitively
reachable from each parameter p. if o ∈ reach(m,p), and p is not aliased to
other parameters, classify p as mutable.

11/31

Dynamic Mutability Analysis
How to make it fast:

• the analysis determines object reachability by maintaining and
traversing its own data structure that mirrors the heap, which is

faster than using reflection

• the analysis computes the set of reachable objects

lazily, when a modification occurs

• the analysis caches the set of objects transitively reachable from
every object, invalidating it when one of the objects in the set is
modified

12/31

Dynamic Analysis Heuristic:

1. Classify a parameter as immutable at the end of/during the
execution
• All unknown parameters in methods that were executed more

than N times and block coverage at least t%

Advantages:
• Algorithm classifies parameters as immutable in addition to mutable (adds

6% correctly classified immutable parameters to the best pipeline)

Disadvantages:
• May classify mutable parameters as immutable (0.2% misclassification in our

experiments)

13/31

Dynamic Analysis Heuristic:

2. Using Known Mutable Parameters
• Treat object passed to a mutable parameter as if it is immediately mutated

Advantages:
• Can discover possible mutation that do not necessarily happen in the

execution (In practice it was not highly effective in a pipeline due to the static
analysis).

• Minor performance improvement by not waiting for the field write and
storing less information (1% -5% in our experiments)

Disadvantages:
• Can propagate misclassification if the input classification contains

misclassification (did not happen in our experiments)

14/31

Dynamic Analysis Heuristic:

3. Classifying aliased mutated parameters
• classifies a parameter p as mutable if the object that p points to is modified,

regardless of whether the modification happened through an alias to p or
through the reference p itself

Advantages:
• identify mutability in advance of further static analysis

Disadvantages:
• The heuristic is i-sound but m-unsound.

15/31

Randomly Generated Inputs to the Dynamic Analysis
Provided by user
• Exercises complex behavior

• May have limited coverage

Generated Randomly (Pacheco 06)
• Fully automatic process

• Focus on unclassified parameters

• Dynamic analysis can be iterated

Dynamic analysis in the pipeline Correct % Misclassified %

Using user input 86.9 3.8

Using focused Iterative random generated 90.2 2.8

Using both user & random generated input 91.1 3.4

16/31

Static Analysis
Analyses:
• Intra-procedural points-to analysis
• Inter-procedural propagation analysis

Very simple
• Scales well
• Very coarse pointer analysis
• No complicated escape analysis
• No use of method summaries

Designed to be used in conjunction with other analyses
• Other analyses make up for its weak points, and vice versa

17/31

Intraprocedural Static Analysis
Pointer Analysis
• Calculate which parameters each Java local may point to

• Assume that method calls alias all parameters

Intraprocedural Static Analysis
• Mark direct field and array mutations as mutable

• Mark parameters that aren’t directly mutated and don’t escape through
method calls as immutable

• Leave the rest as unknown

18/31

Interprocedural Propagation
Uses the same pointer analysis

Constructs a Parameter Dependency Graph
• Shows how values get passed as parameters

Propagates mutability through the graph
• Unknown parameters that are only passed to immutable positions should be

immutable

• Unknown parameters that are passed to mutable positions should be mutable

19/31

Static Analysis Example
class List {

int size(List this){ return n;}

void add(List this, Object o) {…

this.array[index] = o; …

}

void addAll(List this, List l){…

this.add(x); …

}

}

20/31

Static Analysis Example
class List {

int size(List this){ return n;}

void add(List this, Object o) {…

this.array[index] = o; …

}

void addAll(List this, List l){…

this.add(x); …

}

}

Initial classification – all unknown

21/31

Static Analysis Example
class List {

int size(List this){ return n;}

void add(List this, Object o) {…

this.array[index] = o; …

}

void addAll(List this, List l){…

this.add(x); …

}

}

After Intra-Procedural analysis

22/31

Static Analysis Example
class List {

int size(List this){ return n;}

void add(List this, Object o) {…

this.array[index] = o; …

}

void addAll(List this, List l){…

this.add(x); …

}

}

After Inter-Procedural propagation

23/31

Evaluation
 Pipeline construction

 Accuracy

 Scalability

 Applicability

6 subject programs; largest 185KLOC

24/31

Pipeline Construction
Always start with the intra-procedural analysis:
• Sound and very simple.
• Discover the classification of many trivial or easily detectable parameters

Always run propagation after each analysis:
• Only the first time is expensive (parameter graph is only calculated once)
• Adds between 0.3%-40% to the correct classification results of a pipeline

ending with a non propagation, classification changing analysis

Static analyses should be the first part of the pipeline for the best combination
of dynamic and static analysis
• The static analyses sets the ground for the following dynamic analysis

reducing its imprecision by 75%

25/31

Pipeline Construction

 Random input generation is more effective then user input

 Use all the dynamic analysis heuristics

Best Combination (out of 168):

26/31

Accuracy Evaluation

Analysis Correct % Imprecise % Misclassified %
m/i i/m

JPPA (Salcianu) 27.5 72.5 0.0 0.0

JPPA + Heuristic

(mutable if possible write)

88.1 8.0 3.9 0.0

Staged Analysis 90.2 7.0 2.7 0.1

Results for eclipse compiler (107 KLOC):

27/31

Scalability Evaluation

Analysis Total (s)

JPPA 5586

Intra-Procedural 167

… + Inter-Procedural 564（mostly call graph construction）

… + Dynamic (Random focused iterative) 1484

… + Inter-Procedural 1493

Execution times on Daikon (185KLOC):

28/31

Applicability Evaluation

Analysis Nodes Edges Time (s)

No mutability

information

444729 624767 6703

JPPA 131425 210354 4626

Staged Analysis 124601 201327 4271

Client application:
Palulu, Artzi 06: Model-based test input generation

Smaller Model ！ Less Generation Time !

29/31

Conclusions
Framework for a staged mutability analysis

Novel dynamic analysis
◦ Iterative random input generation is competitive with user input

Combination of lightweight static and dynamic analysis
◦ Scalable

◦ Accurate

Evaluation
◦ Sheds light into the complexity of the problem and the effectiveness of the analyses applied to it

◦ Investigate tradeoffs between analysis complexity and precision

Improve client applications
◦ Reduce model size for test generation

30/31

Thanks & Questions?
Reference:

“A formal definition and evaluation of parameter immutability” by Shay Artzi, Jaime Quinonez,
Adam Kieżun, and Michael D. Ernst. Automated Software Engineering, vol. 16, no. 1, 2009, pp.
145-192.

http://publications.csail.mit.edu

31/31

